Internship and thesis proposals
Manipulating entangled photons through complex media

Domaines
Quantum optics
Non-linear optics

Type of internship
Expérimental
Description
Quantum entanglement underpins technologies in communication, computing, and imaging, but its fragile nature makes it highly sensitive to optical disorder such as turbulence or scattering. This limits the performance of many quantum protocols and poses a major challenge for real-world applications. In collaboration with Prof. Gigan’s group at LKB, we investigate how entangled photons propagate through complex media and develop methods to preserve and control their quantum properties. We have shown that wavefront shaping, originally designed for classical light, can compensate for scattering and enable entanglement transmission through diffusive layers. Surprisingly, disorder can also be exploited: we demonstrated Bell inequality violations through multimode fibers, opening new perspectives for entanglement distribution in networks. Building on these results, this Master’s internship (with the possibility of continuing to a PhD) will focus on transmitting complex entangled two-photon states (e.g. polariation, space, spectral) through highly scattering media. The project will develop a novel multi-plane wavefront shaping strategy, inspired by multi-plane light converters, combining the expertise of Dr. Defienne’s team in quantum imaging with Prof. Gigan’s advances in wavefront shaping. More infos: www.quantumimagingparis.fr

Contact
Hugo Defienne
0652656137


Email
Laboratory : INSP - UMR 7588
Team : INSP : NanOpt
Team Website
/ Thesis :    Funding :