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Motivation

Recent breakthroughs in Artificial Intelligence require an exponential growth
(x4 per year) of computing power and, therefore, of energy consumption, rais-
ing huge ecological and social concerns. Little research has been done si far in
the field of machine learning to address this pressing problem. Inspiration can be
drawn from the brain of organisms, which have evolved under strong metabolic
constraints for hundreds of millions of years. Recently, computational neuro-
scientists proposed empirical learning rules to curb energy consumption and
applied them to few data sets or contexts [1, 2]. The purpose of this internship
is to develop statistical mechanics tools to reach a deep understanding of the
learning dynamics induced by those rules and, eventually, to improve them.

Energy-efficient learning rules

Standard dynamics for the learning of a neural net parametrized by J is gradient
descent of its loss L(J): the update AJ = J(t + 1) — J(¢), where ¢t denotes the
step of the learning dynamics, is proportional to —9L/dJ. Sparsification of this
rule has been proposed to decrease the energy budget of learning with artificial
neural networks [1, 2]. In practice, the gradient is multiplied, element-wise (®),
with a probabilistic mask M with 0-1 entries, see Figure 1.

Choices for this mask include:
e fully random with independent entries;

e rank/column deletions to mimic transient removal of neurons as in dropout
3];

e preservation of coherent paths connecting inputs to outputs, called subnets
in [1].

Furthermore, non-linear transformation, e.g. clipping of the update can prevent
large modifications to the interactions, expected to be costly.
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Figure 1: Energy-efficient training. A network is trained, here for classifying
MNIST digits. The gradient of the loss, after masking many connections (shown
in red), defines the updates of the basic network parameters.

Theoretical Analysis

We will characterize the training dynamics induced by these rules. The starting
point will be the generating function for the neural and interaction network
dynamics, informally written as

Z(9s) = /HdJ(t) IR (AJ(t) T M@)o g?) DIFHORIONENET

where the source term g; allows one to compute observables of interest; 1 rep-
resents the learning rate.

Exponential representations of the Dirac distributions by means of auxiliary
fields will lead to a Martin-Siggia-Rose (MSR) path integral formulation [4],
which will be averaged over the random mask; notice that considering other
fields x, representing the activities of the units, will be necessary to explicitly
write the loss L (Figure 1).

When the measure dJ is Gaussian, this formalism is similar to dynamical
mean-field theory, which has been applied to study the dynamics of randomly
connected neural networks [5] and of some simple learning problems correspond-
ing to a single-layer neural network [6]. We plan here to consider more complex
feedforward networks, as in [1], or even unsupervised architectures, such as
Boltzmann machines.

We will compare the proposed rules according to their performance (value
of the loss after training, time to convergence) and their energy consumption
due to the modifications of the connections and to the activity of the network
across the training phase.
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