INTERNSHIP PROPOSAL

Laboratory name: C2N – Centre de Nanosciences et Nanotechnologies

CNRS identification code: UMR 9001

Internship director'surname: J.C. Girard/H.Aubin

e-mail:jean-christophe.girard@cnrs.fr / herve.aubin@universite-paris-saclay.fr

Phone number: 0170270644 **Web page**: PHYNANO group

Internship location: C2N, 10 boulevard Thomas Gobert, 91120 Palaiseau

Thesis possibility after internship:YES

Funding: NO (not identified yet)

If YES, which type of funding:

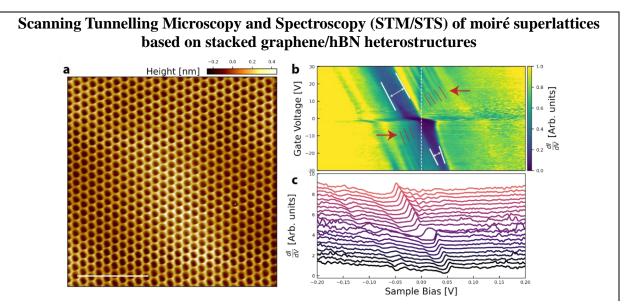


Figure: a) STM images of a moiré lattice obtained by aligning a bilayer of graphene with an hbN substrate. The white scale bar is 100 nm long. b) Differential conductance dl/dV as function of sample bias and back-gate voltage. One clearly identify the band-gap of bilayer graphene, its amplitude increases with electric field as expected theoretically. c) spectra extract from the map in panel b.Data acquired in the STM group of C2N.

2D heterostructures formed by graphene and/or transition metal dichalcogenides (TMDCs), have become a captivating platform for exploring the interplay between strong electronic correlations and non-trivial band topology[1,2].

The project aims to study, by STM in ultra-high vacuum and low temperature (4.2 K), bilayer graphene (AB-G) and rhombohedral graphene (ABCA-G) heterostructures aligned with hexagonal boron nitride (hBN).

In addition to STM, the student will have the possibility to participate to the microfabrication of the heterostructures supervised by R. Ribeiro in the PHYNANO group, learn to work in a clear room environment and perform transport measurements.

[1] D. M. Kennes et al., Nat. Phys. 17, 155 (2021).

[2] Z. Lu et al., Nature **626**, 759 (2024).

Techniques/methods in use:

STM/STS in ultra-high vacuum (UHV) and cryogenic conditions (4.2 K)

Applicant skills: Experimentalist interested by experiments in UHV and cryogenic conditions and/or the fabrication of van der Waals heterostructures.

Please, indicate which speciality(ies) seem(s) to be more adapted to the subject:

Condensed Matter Physics: YES Soft Matter and Biological Physics: NO

Quantum Physics: YES Theoretical Physics: NO