

Monitored Quantum Many-Body Systems

Unitarity is a fundamental property of quantum mechanics which underlies the dynamics of closed quantum many-body systems, the concept of thermalisation and the emergence of statistical mechanics. A different paradigm for quantum dynamics arises in presence of an external monitoring apparatus which locally measures a system observable. The resulting dynamics, conditioned to the a set of measurement outcomes describe a stochastic quantum trajectory[1].

The goal of this project is to explore the dynamics of monitored quantum many-body systems and the statistical properties of the resulting quantum trajectories, their entanglement properties and phase transitions. Examples include study the monitored dynamics in gaussian monitored systems[2,3], fully connected models[4,5] or or explore the connections with classical models for stochastic resetting[6,7].

During this theoretical internship, the Master's student will acquire, develop, and apply state- of-the-art techniques for open quantum many-body physics to solve paradigmatic models for non-unitary quantum systems. This internship can naturally evolve into a PhD Thesis at the interface between nonequilibrium quantum dynamics, open quantum systems, statistical physics and quantum information.

- [1] R. Fazio, J. Keeling, L. Mazza, M. Schiro, SciPost Phys. Lect. Notes 99 (2025)
- [2] X Turkeshi, A Biella, R Fazio, M Dalmonte, M Schiró, Physical Review B 103 (22), 224210 (2021)
- [3] R. Soares, Y. Le Gal, M. Schiro, Physical Review B 111, 064313 (2025)
- [4] G. Passarelli et al, Physical Review Letters 132, 163401 (2023)
- [5] A. Delmonte et al, Physical Review Research 7, 023082 (2025)
- [6] X Turkeshi, R Fazio, M Dalmonte, M Schiró, Physical Review B 105, L241114 (2022)
- [7] Y. Le Gal, X Turkeshi, M Schiró, PRX Quantum 5, 030329 (2024)

Contact: Marco Schiro, JEIP College de France, marco.schiro@college-de-france.fr; Telephone: +33 1 44 27 14 90