

Understanding Turbulence via Machine Learning

Sergio Chibbaro¹, Cyril Furtlehner^{1,2}, Bérengère Dubrulle³, ¹ LISN Université Paris-Saclay ² INRIA, TAU team, Université Paris-Saclay ³ SPHYNX, SPEC, CEA

Context In the last decade, machine learning (ML), and more specifically deep neural networks (DNN), have thoroughly renewed the research perspectives in many fields. In this work we would like to assess the capability of ML to give insights on the physical structure of the cascade process in turbulence.

Project The most notable feature of turbulence is the presence of a cascade, as a prototypical of a strong out-of-equilibrium steady statistical process, as firstly analysed by Kolmogorov, Onsager and Heisenberg. The problem is known to be described by hydrodynamic Navier-Stokes equations [1], which are however extremely complex and have not allowed any successful first-principle approach. We consider here a dynamical system model of turbulence, namely the shell model of turbulence. The problem is described by the following set of equations:

$$\frac{du_n}{dt} = i(ak_{n+1}u_{n+2}u_{n+1}^* + bk_nu_{n+1}u_{n-1}^* - ck_{n-1}u_{n-1}u_{n-2}) - \nu k_n^2 u_n + f_n \tag{1}$$

for $n=1,2,3,...,u_n$ being a Fourier component of the velocity field, associated to the wave numbers k_n . These are taken to be $k_n=k_0\lambda^n$, with $\lambda>1$ being the shell spacing parameter, and $k_0>0$. In order for the shell model to be a system of the hydrodynamic type we require that energy is an inviscid invariant. Despite the simplicity of the model with respect to the original Navier-Stokes equations, Shell models reproduce many of the intrinsic feature of turbulent cascade, notably the energy spectrum and intermittency.

Learning an effective shell model: The question is whether it is possible to learn an effective shell model from

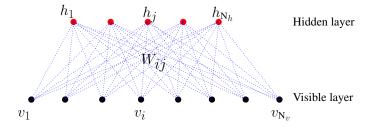


Figure 1: bipartite structure of the RBM.

Navier-Stokes turbulent flow. The first simple model to check would be to learn a multi-variate Gaussian distribution with sparse inverse covariance matrix, which would correspond to use the linear response theory. To go beyond the linear approximation, we could consider as a possible candidate the restricted Boltzmann machine (see e.g. [3]), which is a probabilistic model of the form

$$P(\mathbf{v}, \mathbf{h}) = P_{\text{prior}}(\mathbf{v})P_{\text{prior}}(\mathbf{h}) \exp\left(\sum_{ij} v_i W_{ij} h_j\right)$$

defined as a two layers neural network, the first one corresponding to the visible variables we want to model – here the u_n at different time-steps – the second layer consisting of hidden variables (never observed) being there to build the correct dependencies between the visible variables via the weight matrix W. Once the model is learned, thanks to some systematic expansion of the energy function, it is then in principle possible to extract the dominant couplings, and thus an effective model. The study is interdisciplinary with an interplay of applied mathematics, statistical physics, fluid mechanics and informatics. This internship is part of a larger project in collaboration with the IMT at Brest (R. Fablet, C. Granero, P. Tandeo), and it can be followed by a Phd thesis on different axis. Depending on the skills of the candidate, different tracks can be explored.

^{*}mail: sergio.chibbaro@universite-paris-saclay.fr, cyril.furtlehner@inria.fr, berengere.dubrulle@cea.fr