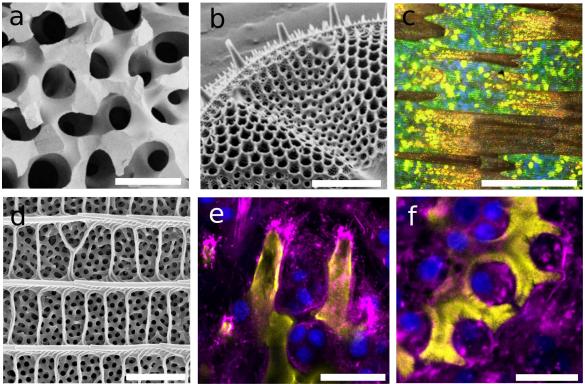


Curvature-growth interplay in the Morphogenesis of skeleton microstructures: Diatoms, sea Urchins & Butterflies


Location: Matière et Systèmes Complexes Laboratory, UMR 7057, rue A. Domon et L. Duquet, 75013 Paris. **Supervision:** Giulio Facchini, Stéphane Douady **E-mail**: giulio.facchini@u-paris.fr, stephane.douady@u-paris.fr

Thesis possibility after internship: YES Funding: Ecole doctorale PIF

Keywords: morphogenesis, self-organisation, 3D structures, mechanobiology

The context: Echinoderms, like sea urchins and sea stars, and sea cucumbers build a calcite skeleton whose porous microstructure, called *stereom*, bears a characteristic saddle-shaped curvature signature¹ (Fig. **a**), close to a gyroid minimal surface. At a much smaller scale, diatoms also produce silica shells (frustules), species-specific saddle-shaped porous architectures, while being in detail very variable (Fig. **b**). Around the same scale, butterfly scales made of chitin can show iridescent colours, and some iridescent spots, each spot corresponding to a local gyroid like structure² (fig. **c**, **d**).

Stereom growth has been addressed at different levels^{3,4} and was shown to rely on the addition of small bids of mineral (~100 nm) at the tips of micro-spines, successively branching and looping to form a complex Nevertheless, the question of how preferential bio-mineral deposition is organised to produce such a coherent, peculiar geometry remains unsolved since solid deposition models would create only trees without reconnections. Frustule growth remains mysterious, even if a handful of models were proposed. Formation of gyroids as in the butterfly scales may be guided by membrane structures⁵ following the minimization of interface energy, but the experimental evidence of such a growth is scarce. Interestingly, recent studies point to a role played by the cytoskeleton in templating and guiding the formation of these hard structures, respectively in echinodemr stereom⁶⁻⁸, diatoms frustules⁹ and butterflies scales¹⁰. Despite these findings, many fundamental questions remain: how and when does branching and looping events take place? Why the final structure bears such a peculiar saddle-shaped geometry? Do stereom, frustule and scale growth rely on a simple and robust self-organized mechanism?

a : sea urchin spine electron micrograph (Yang et al. 2020); **b** : electron micrograph of Actinoptychus senarius \mathbf{c} , \mathbf{d} : Scales of Callophrys rubi. \mathbf{c} : Light micrographs reflecting the poly-crystalline nature of the crystallites with different orientation of the Gyroid structure. \mathbf{d} : Electron micrograph of the gyroid structure under the scale grid (B, scale bar 2 μ m) (Saba et al. 2014) \mathbf{e} , \mathbf{f} : confocal micrograph of sea urchin stereom in a regenerating adult spine (\mathbf{e}) and a juvenile shell (\mathbf{f}): nuclei in blue, freshly grown stereom in yellow, actin in magenta; Scale bars are 100 μ m (a,c), 10 μ m (b,e,f), and 2 μ m. (MSC lab)

The internship: We will study the emergence of peculiar geometries in frustules, sea urchin stereom and butterfly scales and model their growth, taking inspiration in our previous work on termite nests¹¹, and coherently with many recent discoveries pointing to curvature as a strong biological morphogenetic cue¹². The biological cues are not repatterning, but the intervention of another group of biological molecules that can self-organize and direct the growth of the skeleton. In particular we will investigate the role of the actin cytoskeleton, and test the hypothesis that its spatial self-organisation (i) depends on the shape of the pre-existing skeleton and (ii) determine the shape of the skeleton that is built.

To this aim the candidate will **build a minimal numerical model** able to imitate the saddle-shaped geometry of frustules (Fig. **b**) stereom (Fig. **a**) butterfly scales (fig. **d**) starting from very simple interaction rules. As a first model, we will use a mean field approach where a continuous field that mimic the transport and organization of the organic fibres interacts with a growing hard boundary. The model can then be adapted to the specific case of sea urchin stereom comparing the model predictions with the experimental observations performed in our lab (Fig. **e** and **f**) both in wild types and specimen where the cytoskeleton has been perturbed with pharmacological treatments.

This is a **highly interdisciplinary** project and the candidate will interact with different scientific profiles spanning from Physics to Biology. This is a **theoretical/numerical internship** but according to the skills, curiosity, and motivations of the candidate, the internship may be also oriented toward data analysis or experiments (see also, related experimental internship on sea urchins).

References

- [1] Yang, T. *et al.* Quantitative 3D structural analysis of the cellular microstructure of sea urchin spines (I): Methodology. *Acta Biomater.* **107**, 204–217 (2020).
- [2] Saba, M. *et al.* Absence of Circular Polarisation in Reflections of Butterfly Wing Scales with Chiral Gyroid Structure. *Mater. Today Proc.* **1**, 193–208 (2014).
- [3] Politi, Y. Sea Urchin Spine Calcite Forms via a Transient Amorphous Calcium Carbonate Phase. *Science* **306**, 1161–1164 (2004).
- [4] Gorzelak, P. *et al.* 26Mg labeling of the sea urchin regenerating spine: Insights into echinoderm biomineralization process. *J. Struct. Biol.* **176**, 119–126 (2011).
- [5] Saranathan, V. *et al.* Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales. *Proc. Natl. Acad. Sci.* **107**, 11676–11681 (2010).
- [6] Hijaze, E. *et al.* ROCK and the actomyosin network control biomineral growth and morphology during sea urchin skeletogenesis. *eLife* **12**, (2024).
- [7] Vyas, P. *et al.* Algorithmic construction of topologically complex biomineral lattices via cellular syncytia. *bioRxiv* https://doi.org/10.1101/2024.02.20.580924 (2024)
- Humański, K. *et al.* Morphogenesis of the diamond-type stereom microlattice and the origin of saddle-shaped minimal surfaces in the echinoderm skeleton. *bioRxiv* https://doi.org/10.1101/2025.10.27.684615 (2025).
- [9] Tesson, B. *et al.* Extensive and Intimate Association of the Cytoskeleton with Forming Silica in Diatoms: Control over Patterning on the Meso- and Micro-Scale. *PLOS ONE* **5**, e14300 (2010).
- [10] Lloyd, V. J. *et al.* The actin cytoskeleton plays multiple roles in structural colour formation in butterfly wing scales. *Nat. Commun.* **15**, 4073 (2024).
- [11] Facchini, G. *et al*. A growth model driven by curvature reproduces geometric features of arboreal termite nests. *J. R. Soc. Interface* 17, 20200093 (2020).
- [12] Schamberger, B. *et al.* Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales. *Adv. Mater.* **35**, 2206110 (2023).