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The context: Echinoderms, like sea urchins and sea stars, and sea cucumbers build a calcite skeleton whose
porous microstructure, called stereom, bears a characteristic saddle-shaped curvature signature® (Fig. a),
close to a gyroid minimal surface. At a much smaller scale, diatoms also produce silica shells (frustules),
species-specific saddle-shaped porous architectures, while being in detail very variable (Fig. b). Around the
same scale, butterfly scales made of chitin can show iridescent colours, and some iridescent spots, each
spot corresponding to a local gyroid like structure? (fig. c, d).

Stereom growth has been addressed at different levels®**and was shown to rely on the addition of small bids
of mineral (~100 nm) at the tips of micro-spines, successively branching and looping to form a complex
Nevertheless, the question of how preferential bio-mineral deposition is organised to produce such a
coherent, peculiar geometry remains unsolved since solid deposition models would create only trees
without reconnections. Frustule growth remains mysterious, even if a handful of models were proposed.
Formation of gyroids as in the butterfly scales may be guided by membrane structures® following the
minimization of interface energy, but the experimental evidence of such a growth is scarce. Interestingly,
recent studies point to a role played by the cytoskeleton in templating and guiding the formation of these
hard structures, respectively in echinodemr stereom®?®, diatoms frustules’ and butterflies scales'.
Despite these findings, many fundamental questions remain: how and when does branching and looping
events take place? Why the final structure bears such a peculiar saddle-shaped geometry? Do stereom,
frustule and scale growth rely on a simple and robust self-organized mechanism?
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a sea urchin spine electron micrograph (Yang et al. 2020); b : electron micrograph of

Actinoptychus senarius c,d: Scales of Callophrys rubi. ¢ : Light micrographs reflecting the poly-crystalline
nature of the crystallites with different orientation of the Gyroid structure. d : Electron micrograph of the
gyroid structure under the scale grid (B, scale bar 2 um) (Saba et al. 2014) e,f : confocal micrograph of
sea urchin stereom in a regenerating adult spine (e) and a juvenile shell (f) : nuclei in blue, freshly grown
stereom in yellow, actin in magenta; Scale bars are 100 um (a,c), 10 um (b,e,f), and 2 um. (MSC lab)
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The internship: We will study the emergence of peculiar geometries in frustules, sea urchin stereom and
butterfly scales and model their growth, taking inspiration in our previous work on termite nests'!, and
coherently with many recent discoveries pointing to curvature as a strong biological morphogenetic cue®
The biological cues are not repatterning, but the intervention of another group of biological molecules that
can self-organize and direct the growth of the skeleton. In particular we will investigate the role of the actin
cytoskeleton, and test the hypothesis that its spatial self-organisation (i) depends on the shape of the pre-
existing skeleton and (ii) determine the shape of the skeleton that is built.

To this aim the candidate will build a minimal numerical model able to imitate the saddle-shaped geometry
of frustules (Fig. b) stereom (Fig. a) butterfly scales (fig. d) starting from very simple interaction rules. As a
first model, we will use a mean field approach where a continuous field that mimic the transport and
organization of the organic fibres interacts with a growing hard boundary. The model can then be adapted
to the specific case of sea urchin stereom comparing the model predictions with the experimental
observations performed in our lab (Fig. e and f) both in wild types and specimen where the cytoskeleton
has been perturbed with pharmacological treatments.

This is a highly interdisciplinary project and the candidate will interact with different scientific profiles
spanning from Physics to Biology. This is a theoretical/mumerical internship but according to the skills,
curiosity, and motivations of the candidate, the internship may be also oriented toward data analysis or
experiments (see also, related experimental internship on sea urchins).
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