## INTERNSHIP PROPOSAL

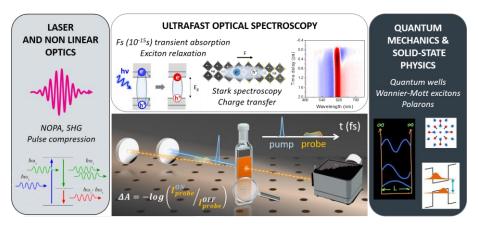
(One page maximum)

Laboratory name: Laboratoire Lumière, Matière et Interfaces (LuMIn)

CNRS identification code: UMR 9024 Internship director'surname: Dr. Elsa Cassette e-mail: elsa.cassette@ens-paris-saclay.fr

Phone number: 0169352139

Web page: https://www.noos.universite-paris-saclay.fr/


Internship location: Building 505, rue du belvédère, 91400 Orsay (plateau)

Thesis possibility after internship: YES

Funding: NO If YES, which type of funding:

## Ultrafast Stark Spectroscopy of Two-dimensional Semiconductor Nanostructures

Keywords: ultrafast optical spectroscopy, exciton photophysics, charge transfer, Stark effect, 2D heterostructure, nonlinear optics, colloidal quantum wells



Context: 2D semiconductor nanostructures have emerged as very promising photoactive materials for various opto-electronic applications (LEDs, lasers, solar cells, photodetectors, etc...). The strong confinement along their thickness leads to quantum well nanostructures with quasi-2D excitons, resulting in strongly thickness-dependent optical and electronic properties. The recent development of original in-plane and out-of plane colloidal hetero-structures composed of 2D semiconductors of only a few monolayers in thickness opens a way to control these properties to a higher level by precisely engineering the excitonic states. However, it requires a deep understanding of the photo-physics in these nanostructures and in particular the exciton dynamics, which is of fundamental interest to reach the highest performances of the light-energy conversion.

*Project:* In this project, we aim at investigating the ultrafast dynamical processes in colloidal heteronanoplatelets composed of halide perovskite and/or metal chalcogenide semiconductors, such as charge- and energy- transfer, hot exciton relaxation, (multiple) exciton interactions and recombinations. We propose to combine ultrafast optical technics with Stark spectroscopies to investigate the effect of the in-plane exciton delocalization and charge transfer character (spatial separation of the electron and hole wavefunctions). The student will be using the femtosecond transient absorption and the time-resolved photoluminescence apparatus (picosecond streak camera) available in our group and will develop and run the TR-Stark experiments.

Requirement: Background in Physics: nonlinear Optics, Quantum Mechanics and Solid-State Physics

Please, indicate which speciality(ies) seem(s) to be more adapted to the subject:

Condensed Matter Physics: YES Soft Matter and Biological Physics: NO Quantum Physics: YES Theoretical Physics: NO