

Scientific context

Weak vector boson scattering (VBS) is a key process to probe the non-Abelian gauge structure of the electroweak interaction. In the absence of any other contributions, the scattering amplitude of longitudinally polarized vector bosons would violate unitarity around the TeV scale. Unitarity restoration in the standard model (SM) relies on the interference of the VBS amplitudes and those involving the Higgs boson. If the SM is only a partial description of particle interactions and its completion happens at higher energies, the cross section of VBS processes could increase substantially between the Higgs boson mass and the scale at which new physics mechanisms intervene, even in a scenario where this scale is not directly reachable at the LHC.

At the end of 2018, CMS recorded about 150 fb⁻¹ of proton-proton collisions at a center-of-mass energy of 13 TeV during Run 2. The LHC restarted in 2022 for the Run 3 and is foreseen to deliver an integrated luminosity of about 300 fb⁻¹ until 2026. The high-luminosity phase of the LHC (HL-LHC) will then start in 2030 with a target integrated luminosity of 3000 fb⁻¹. For the HL-LHC, the CMS collaboration decided to replace the end-cap calorimeters by a radiation-resistant and highly granular detector (HGCAL). Experimentally the VBS events span a large angle in rapidity and involve the entire detector in the measurements, including the forward region. The region covered by the HGCAL will therefore play a crucial role in VBS measurements at the HL-LHC. In particular, the good performance of the Level-1 (L1) trigger system in this region will be of paramount importance.

PhD thesis project

The thesis objectives will be twofold. One objective will consist in using the data that CMS will record during Run 3 together with the Run 2 data, and probe for the first time the polarization in diboson (ZZ) VBS events. This analysis will pave the way towards more precise measurements of polarization fractions in VBS events at the HL-LHC and understanding the role of the Higgs boson in the regularization of VBS processes.

The other objective will consist in optimizing, on simulated data, the reconstruction of particle showers in the HGCAL at the L1 trigger, and validating it on the real system hardware. Exploratory studies of implementing distributed machine learning techniques (such as deep neural networks) on FPGAs (field-programmable gate array) is also foreseen.

The thesis will be conducted at LLR in the CMS group and travels to CERN are expected.

Laboratoire Leprince-Ringuet

Ilr.in2p3.fr

LLR Ecole Polytechnique Route de Saclay F - 91128 PALAISEAU Cedex

T. (33) 1 69 33 55 00 F. (33) 1 69 33 55 08 UMR 7638

Jean-Baptiste SAUVAN Chargé de Recherche jean-baptiste.sauvan@cern.ch

M2 internship project

The PhD thesis can be preceded by a Master 2 internship. The exact subject will be defined depending on the length of the internship and will be an introduction to one of the two PhD thesis objectives presented above. It will cover either a study of VBS ZZ events or a study of the future HGCAL L1 trigger reconstruction algorithms and the choice will be made prior to the internship start date in agreement with the candidate.

Host team at the Laboratoire Leprince-Ringuet

The CMS group at LLR is a founding member of the CMS collaboration. It has designed, built, and is responsible for the operation of the L1 trigger for the electromagnetic calorimeter (ECAL). It has also designed the calorimeter mechanics and contributed to the front-end readout electronics. It has major involvement in particle reconstruction and identification with the e/gamma and tau Physics Object Groups, and contributed to the development of the Particle Flow event reconstruction. It is among the leading protagonists within the CMS collaboration in VBS, multiboson and Higgs physics, as well as in heavy ions physics.

The group is also strongly involved in the development of the future HGCAL for the HL-LHC, in particular on its mechanical design, on the generation of the L1 trigger primitives, and on the development of offline reconstruction algorithms. In addition, it is participating in the assembly of the detector at CERN.

Other information

A Master 2 in high-energy physics is required to apply for the PhD thesis.

<u>Contact for further information</u>: Jean-Baptiste SAUVAN

jean-baptiste.sauvan@cern.ch

