## INTERNSHIP PROPOSAL

(One page maximum)

Laboratory name: IMPMC

CNRS identification code: UMR7590 Internship director'surname: Bove L.E.

e-mail:livia.bove@upmc.fr Phone number:0667685121

Web page: https://www.researchgate.net/profile/Livia-Bove

Internship location: IMPMC, Sorbonne University

Thesis possibility after internship: YES

Funding: YES If YES, which type of funding: ANR

## Quantum hydrogen storage in ice matrix

Hydrogen-filled ices (HH) represent a fascinating class of quantum materials where hydrogen molecules are confined within a crystalline water framework. Beyond their potential for safe and efficient solid-state hydrogen storage — thanks to high volumetric densities and relatively mild operating conditions — these systems display remarkable quantum phenomena arising from the coupled dynamics of hydrogen and water sublattices.

Recent studies have unveiled hydrogen-rich metastable phases (C0, C2, C3) exhibiting ultra-short  $H_2$ – $H_2$ O distances and up to 2:1  $H_2$ : $H_2$ O ratios. In these structures, both the water and hydrogen sublattices participate in a **dual quantum system** in which nuclear quantum effects dominate, driving orientational ordering, hydrogen-bond symmetrization, and lattice symmetry breaking.

The internship will explore **quantum coupling and hydrogen confinement** in these materials using high-pressure and cryogenic techniques combined with **neutron and synchrotron scattering**, supported by path-integral and ab initio simulations. The project will aim to (i) identify new low-pressure synthesis pathways through binary or co-guest systems (e.g. N<sub>2</sub>, Ar, THF), (ii) probe the onset of quantum-induced structural transitions, and (iii) establish the microscopic principles enabling dense and recyclable hydrogen storage in expanded ice frameworks.

This research bridges quantum condensed matter physics and energy materials science, positioning hydrogen-filled ices as model systems for exploring collective quantum behavior in molecular crystals and for developing quantum-engineered solid hydrogen carriers.

[1] U. L. Ranieri, et al., PNAS 120 (52) e2312665120 (2023). [2] S. DiCataldo, et al., PRL 133 (23), 236101 (2024). (2024). [3] L. Andriambariarijaona, et al. *Physical Review B*, 111(21), 214109 (2025). [4] L. Monacelli, et al. PRB (in press) *arXiv preprint*, arXiv:2506.13169 (2025); [4] L. Renauld et al, submitted <a href="arXiv:2510.25707">arXiv:2510.25707</a>

Please, indicate which speciality(ies) seem(s) to be more adapted to the subject:

Condensed Matter Physics: YES. Soft Matter and Biological Physics: YES Quantum Physics: YES Theoretical Physics: YES/