Pilot-wave dynamics of swimming particles in stratified fluids

M2 internship (5-6 months)

Location: IRPHE, 49 Rue F. Joliot Curie 13013 Marseille

Supervisors: Simon Gsell & Patrice Le Gal

Contact: simon.gsell@univ-amu.fr; patrice.le-gal@univ-amu.fr

Grant: ~600 euros/month

Starting date: February 2026 (flexible)

PhD opportunity: encouraged to apply to the <u>doctoral school PhD call</u> after the internship **Keywords.** Wave-particle interactions; Collective behavior; Pilot-wave hydrodynamics

Context. Over the past two decades, experiments with bouncing droplets have shown that macroscopic "pilot-wave" systems - where a particle is guided by its self-generated wave - can mimic certain aspects of quantum-like dynamics [1]. We recently demonstrated that similar dynamics emerge when a particle oscillates in a density-stratified fluid [2–3], such as in the ocean. The oscillating particle emits internal gravity waves and begins to swim horizontally due to a Doppler effect that creates a non linear propulsive force. These waves propagate over large distances, reflect on boundaries, and can strongly modify—or even cancel—the particle's motion. A key open question now concerns collective states: how groups of such particles interact through their wave fields [4]. This internship will focus on the simplest case—a pair of particles in the same horizontal plane—using experiments, theory, and simulations.

Objectives. The goal of the project is to systematically explore pairwise interactions between oscillating particles. We will:

- Investigate different collective behaviors (attraction, repulsion, oscillations, etc.) as system parameters vary (wave frequency, Froude number, Reynolds number).
- Build and compare phase diagrams from experiments and simulations.
- Develop simple theoretical models to rationalize observations.

These results will provide the foundation for studying larger ensembles of particles, which could be pursued in a PhD project.

Method. The student will work with:

- An existing experimental setup based on the *ludion principle*: rigid capsules with an internal air bubble, whose buoyancy is modulated by controlled pressure oscillations.
- A 2D lattice-Boltzmann simulation code to model wave-particle interactions.

Candidate profile. We welcome motivated Master's students in physics, fluid mechanics, applied mathematics, or related fields. Some familiarity with experimental work or numerical simulations is a plus, but enthusiasm and curiosity are most important.

- [1] Bush & Oza, Rep. Prog. Phys., 2020. doi:10.1088/1361-6633/abc22c
- [2] Le Gal et al., J. Fluid Mech., 2021. doi:10.1017/jfm.2021.931
- [3] Gsell & Le Gal, Phys. Rev. Fluids, in press. doi:10.48550/arXiv.2501.04402
- [4] Couder et al., Nature, 2025. doi:10.1038/437208a

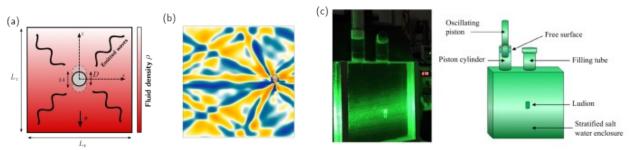


Fig. 1- (a) Schematic view of an oscillating particle emitting gravity waves in a density-stratified fluid. (b) Simulated wave field around an oscillating particle. (c) Photograph and schematic of the experimental setup.